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Abstract

Motivated by Higgs Portal and Hidden Valley models, heavy particle dark matter that
communicates with the supersymmetric Standard Model via pure Higgs sector interac-
tions is considered. We show that a thermal relic abundance consistent with the mea-
sured density of dark matter is possible for masses up to ∼ 30 TeV. For dark matter
masses above ∼ 1 TeV, non-perturbative Sommerfeld corrections to the annihilation rate
are large, and have the potential to greatly affect indirect detection signals. For large
dark matter masses, the Higgs-dark matter sector couplings are large and we show how
such models may be given a UV completion within the context of so-called “Fat-Higgs”
models. Higgs Portal dark matter provides an example of an attractive alternative to
conventional MSSM neutralino dark matter that may evade discovery at the LHC, while
still being within the reach of current and upcoming indirect detection experiments.
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1 Introduction

Recently, there has been a surge of interest in models where the Standard Model (SM) or
the Minimal Supersymmetric Standard Model (MSSM) communicates with a partially
hidden sector via either Z ′ or Higgs interactions [1, 2, 3, 4, 5]. These Hidden Valley or
Higgs Portal models provide a stimulating and consistent alternative to the usual model
building assumption of a desert above the weak scale. Higgs-sector and Z ′ interactions
between the hidden sector and the SM states are special in that they involve gauge-
invariant and flavour-symmetry-invariant operators of dimension dO ≤ 4, and thus can
be induced by physics at arbitrarily high scales with unsuppressed couplings. In the case
of a Z ′ the interactions can either occur directly with SM states if they are charged
under the U(1)′ or, possibly more interestingly, indirectly due to a kinetic-mixing term,
ǫF µν

Y F ′
µν , between hypercharge and the new U(1), in which case ǫ, and thus the effective

size of the SM-hidden sector interaction, can be suppressed [6, 1, 5]. On the other hand,
in the case of the Higgs-sector interactions of interest to us here, couplings of the form
|H|2s2 involving the SM (or MSSM) Higgs states and new SM gauge singlet states can
be large, especially in the situation where the TeV-scale theory UV-completes not far
above the weak scale to a strongly interacting theory with light composite states.

It is interesting to ask whether such models lead to new dark matter candidates with
qualitatively different phenomenology. In this paper we argue that dark matter commu-
nicating with a supersymmeterized SM purely via Higgs-sector interactions (the Higgs
portal) leads to new and unusual features.1 First, as we will show, the thermal relic
abundance in such a scenario can be consistent with the measured density of dark mat-
ter for masses as high as ∼ 30 TeV, much larger than are usually considered (while also
being consistent with the upper bound on the mass of thermal relic dark matter derived
from unitarity [10]). Second, for dark matter masses above ∼ 1 TeV non-perturbative
Sommerfeld corrections [11] to the low-velocity annihilation rate are large. Several au-
thors have recently recognised the potential importance of these corrections to the dark
matter relic density calculations [12, 13, 14, 15], which lead to enhanced annihilation
rates in the case of attractive interactions. Even more importantly, as we will argue in
detail in a companion paper [16], these corrections have the potential to greatly enhance
the indirect annihilation signals by factors of up to 105 beyond those predicted without
consideration of the Sommerfeld factor, potentially leading to a significant change in the
optimal search strategy for the indirect detection of dark matter.

Furthermore, the models presented here, which are independently motivated by the
desire to raise the MSSM upper bound on the lightest Higgs mass (and so relax the
current tension with the LEP2 Higgs mass exclusion limit), provide examples in which
the dark matter particle avoids detection at the Large Hadron Collider (LHC) but is
potentially detectable by indirect and direct dark matter searches. It is also interesting
that our models may be given a UV completion in so-called “Fat-Higgs” models [17]
2 in which some TeV-scale states are composites of the underlying strong-coupling dy-

1Other works which consider aspects of dark matter phenomenology in the context of Hidden Valley
or Higgs Portal models are contained in Ref. [7, 8], while earlier related studies are contained in Ref. [9].

2Other models in a similar class to the Fat Higgs model are discussed in Ref. [18].
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namics. This UV completion is consistent with both collider constraints and aesthetic
requirements such as gauge coupling unification. This completion is discussed in detail
in Section 6.

Finally, the existence of partially hidden (secluded) sectors is extremely common in
models that attempt to embed the SM within a larger structure. Well studied examples
include higher-rank GUT models, such as those based upon E6 [19], and supersymmetry
breaking models, in particular the messenger sectors of gauge-mediated supersymmetry
breaking models [7]. More recently, it has been argued that secluded or hidden sectors in
the form of Randall-Sundrum-like warped “throats” [20] are a ubiquitous feature of the
landscape of string compactifications [21], thus implying that there is not an insignificant
probability that a hidden or secluded throat with a mass scale close to the weak scale
exists. In fact, as argued by Patt and Wilczek [3], the scales in sectors interacting by
Higgs portal interactions of the form we consider are quite commonly tied together.

Naturally, if our dark matter candidate is to be the dominant component of the cos-
mological dark matter, we must ensure that the usual neutralino dark matter candidate
of the MSSM leads either to a subdominant relic density or is unstable. In the case
in which R-parity is conserved and a neutralino is the lightest supersymmetric particle
(LSP), the thermally generated abundance of such a state is in many models well below
the measured dark matter density. In particular, wino-like or higgsino-like LSPs annihi-
late very efficiently, leading to subdominant abundances [22]. Coannihilations with other
supersymmetric states can also deplete the neutralino abundance in many models [23].
Alternatively, instead of being a neutralino, the LSP could be a different supersymmetric
state, such as a gravitino. Within the context of gauge-mediated supersymmetry break-
ing, for example, the LSP is typically a light gravitino which constitutes only a very
small fraction of the cosmological dark matter abundance. On the other hand, if there
exist R-parity violating interactions, then the LSP will be unstable thus evading this
issue entirely.3

We therefore are lead to the conclusion that Higgs portal dark matter provides an
example of an attractive and motivated alternative to conventional MSSM neutralino
dark matter which is less fine-tuned and may be tested by current and future indirect
detection experiments.

In Section 2, we introduce our models and explain how they are a modified form of
the so-called Minimal Non-minimal Supersymmetric Standard Model (MNSSM), while
in Section 3 we give a brief introduction to the physics of the Sommerfeld enhancement
that plays an important role in our calculations and might be unfamiliar to many read-
ers. In Section 4 we summarize the calculation of the relevant dark matter annihilation
cross section including the Sommerfeld enhancement and present our results for the relic
density. In Section 5 we briefly discuss the direct and indirect detection of our dark
matter candidate, leaving a more detailed study for a companion paper [16]. Section 6,
in which we demonstrate that our models may be given a UV completion in so-called
“Fat-Higgs” models where the states are composites of underlying strongly coupled dy-
namics, is somewhat outside the main development of our paper and may be skipped by

3A late-decaying LSP may even be beneficial in that it can correct the BBN prediction for the 6Li
to 7Li ratio [24].
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readers only interested in dark matter phenomenology. Finally, our conclusions are given
in Section 7.

2 Heavy Dark Matter in SUSY Higgs Portal Models

(or the modified MNSSM)

The model that we wish to study, which is motivated by Hidden Valley [1] and especially
Higgs Portal [2, 3] considerations, is specified by the superpotential

W = WMSSM(µ = 0) + λNHuHd +
λ′

2
NS2 +

ms̃

2
S2 + t2N, (1)

where N and S are singlets (of the SM gauge group) and N gets an electroweak sized
scalar vacuum expectation value (vev). The parameters λ and λ′ are dimensionless
Yukawa couplings, ms̃ is a supersymmetry preserving mass, and t2 is a mass dimen-
sion two “tadpole”-term parameter that is in general possible. The term WMSSM(µ = 0)
refers to the MSSM superpotential without the “µ” term.

Note that S has a non-R Z2 symmetry which will be unbroken in the vacuum and
leads to a stable relic, and, N does not have a mass term before electroweak symmetry
is broken. The proposed dark matter particle will be the fermionic component of the S
superfield, s̃. We will assume that the standard neutralino supersymmetric dark mat-
ter candidate is irrelevant, either because Rp is broken, or because its relic density is
subdominant to that of s̃.

This model is an attractive and simple variation of the models outlined in Refs. [26]
and [27], (referred to as the Minimal Non-minimal Supersymmetric Standard Model
(MNSSM) in Ref. [26]), where the superpotential has the form

WMNSSM = WMSSM(µ = 0) + λNHuHd + t2N. (2)

The coupling λ in the MNSSM is taken to be perturbative up to some high energy
cutoff scale, Mgut or Mpl. In our variant, we have added another singlet superfield, S,
which will have a large (multi-TeV) mass and whose fermionic component will provide
the dark matter. The annihilation cross sections determining the number density of our
dark matter particle will depend on the couplings, λ and λ′, which we will sometimes take
to be large in order for the dark matter particle to have an acceptable relic abundance.

We note that there is no problem with taking S to be an elementary field and
simultaneously choosing large values for the coupling λ if the theory is an effective theory
with cutoff Λ0 < 100 TeV. There is also no problem in having a mass for S in this case.
If, on the other hand, the cutoff is taken to be large (with S still elementary), say Λ0 ≥
MGUT , then the presence of the S mass implies tadpole terms which spoil the stability
of the weak scale [26, 27]. However, we will argue in Section 6 that the above effective
theory can result from a limit of the Fat Higgs model [17] in which S is a composite
meson field of new supersymmetry-preserving strong-interaction dynamics, giving our
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effective theory a possible and plausible UV completion without tadpole problems, and
also with a natural reason to expect large couplings λ and λ′. We would like to make
the point, however, that this is only one of many possible examples of a UV completion
with large couplings λ and λ′. We intend here to analyse the dark matter phenomenology
arising from the effective superpotential in Eq.(1) rather than that corresponding to the
Fat Higgs model or any other particular UV completion of our model.

As mentioned above, the proposed dark matter particle will be the fermionic com-
ponent of the S superfield, which is the lightest Z2-odd hidden valley particle (LHVP).
We can imagine that we have other hidden valley particles which have been integrated
out leaving the LHVP as the only relevant particle from the hidden valley at the energy
scales we will be considering. We take the mass of the dark matter particle, ms̃, to be
within the range of a few TeV to several tens of TeV.

Using the superpotential in Eq.(1), the Lagrangian terms determining the important
interactions and masses in the model can be split into two sectors: fermionic masses and
interactions and a purely scalar potential,

L = Lfermion + Lscalar, (3)

where,

Lfermion ⊃
(

−λnh̃uh̃d − λñh̃uhd − λñhuh̃d −
λ′

2
ns̃s̃− λ′ñs̃s− ms̃

2
s̃s̃+ h.c.

)

Lscalar = |λ′ns+ms̃s|2 +
∣

∣λhuhd + t2 + (λ′/2)s2
∣

∣

2
+

∣

∣λnhd + λtt̃Lt̃R
∣

∣

2
+ |λnhu|2

+

(

Aλλnhuhd +
Aλ′

2
λ′ns2 +

B

2
ms̃s

2 + Ct2n + h.c.

)

+ M2
hu

|hu|2 +M2
hd
|hd|2 +M2

s |s|2 +M2
n |n|2 , (4)

where n (ñ), s (s̃), hu (h̃u) and hd (h̃d) are the scalar (fermionic) components of the
superfields N , S, Hu and Hd respectively. The last two lines of Eq.(4) contain the soft
supersymmetry terms relevant for our model, where Aλ, Aλ′ , B and C are all mass
dimension one parameters.

To assess the viability of our dark matter candidate, we need to calculate its thermal
relic abundance. From Eq.(4) we have all the relevant interactions and masses which
determine the annihilation cross sections of our dark matter particle. An important
point to note is that the freeze-out temperature of our dark matter particle is higher
than the electroweak phase transition temperature, Tc, for the range of dark matter
masses we will consider. For a freeze-out temperature approximately given by Tf ∼
ms̃/25, freeze-out will occur above the electroweak phase transition temperature as long
as ms̃

>∼ 3 TeV. Consequently, in the relic density calculation, electroweak symmetry is
still a good symmetry and no Higgs scalars will have vevs. In our companion paper [16]
we will explore the region of dark matter masses below 3 TeV.

To simplify the analysis, we make the reasonable assumption that the scalar tri-linear
A-terms and bilinear B-terms are small and consequently we neglect their effects in cross
sections. In particular we are setting the tri-linear A-terms, Aλ = Aλ′ = 0. We also
neglect the D-term interactions as these give irrelevant 4-point Higgs interactions.
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Above Tc, the fermionic states ñ, h̃u and h̃d are massless (as are all quarks and gauge
bosons). The only massive fermionic state is s̃ with mass ms̃. In the scalar sector, the
masses of the scalar n states and MSSM Higgs bosons are taken to be negligible compared
to ms̃, which is a good approximation for the parameter range in which we are interested.
The resulting s scalar mass terms are

∆Ls,mass =
λ′t2
2

(s2 + s∗2) + |s|2 (m2
s̃ +M2

s ), (5)

giving CP-even and CP-odd masses, M2
s,even = m2

s̃+M
2
s + λ′t2

2
andM2

s,odd = m2
s̃+M

2
s − λ′t2

2
.

We now want to identify all of the interactions in the model which are of importance
in determining the relic abundance of our dark matter state. The important fermionic
interactions are

Lint
ferm = − 1√

2
(λφnh̃

T
uMCh̃dM + iλanh̃

T
uMCγ5h̃dM + λφuh̃

T
dMCñM + iλauh̃

T
dMCγ5ñM)

− 1√
2
(λφdh̃

T
uMCñM + iλadh̃

T
uMCγ5ñM + λ′φss̃

T
MCñM + iλ′ass̃

T
MCγ5ñM )

− 1

2
√

2
(λ′φns̃

T
MCs̃M + iλ′ans̃

T
MCγ5s̃M), (6)

where we have rewritten the fermionic states in terms of Majorana spinors indicated by
the subscript M and the scalar states in terms of their CP-odd and CP-even components,
denoted generically as Ai = 1√

2
(φi + iai), and C is the charge conjugation matrix. The

scalar interactions which are important for the relic density calculation are then

3 point interaction: λ′ms̃ |s|2 n + h.c = 2λ′ms̃ |s|2 φn

4 point interaction: λ′λhuhds
∗2 + h.c, (7)

where φn is the CP even part of the scalar, n.

3 The Sommerfeld Enhancement

For dark matter particles moving at small (relative) velocities, the exchange of scalar
states leads to an enhancement by factors depending on the inverse velocity, 1/v. This
Sommerfeld enhancement corresponds to the summation of a series of ladder diagrams
where the scalar state is repeatedly exchanged (see Fig. 1). This enhancement is only
significant if there exists an s-wave annihilation amplitude, otherwise the angular mo-
mentum barrier will suppress the effect.4

The calculation of the Sommerfeld enhancement can be formulated in terms of a
non-relativistic quantum two-body problem with a potential acting between the incoming
particles. This is equivalent to the distorted Born-wave approximation common in nuclear

4If vector states are exchanged, there can either be an enhancement or suppression depending on the
relative charges of the annihilating particles.
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Figure 1: Generic Sommerfeld diagram.

physics. To a good approximation this leads to a dressing of the s-wave part of the tree-
level cross sections with a multiplicative factor,

σ = Rσℓ=0
tree. (8)

The full calculation of R can be involved and in many cases, including that of a
Yukawa potential, cannot be solved analytically. In our model the only particles which
can act as the “rungs on the ladder” in the Sommerfeld diagram shown in Fig. 1 are
the fermion and scalar n states. It can be shown, however, that only scalar exchange
contributes to the enhancement. The non-relativistic potential which is relevant for all
the diagrams we will consider is found to be

V = − λ′
2

8πr
e−mnr, (9)

where mn is the mass of the particle acting as the “rungs on the ladder”. The Schrödinger
equation for the two dark matter particle state, ψ, with this potential reads

− 1

ms̃

d2ψ

dr2
+ V.ψ = Kψ, (10)

where K = Mv2 is the kinetic energy of the two dark matter particles in the center-of-
mass frame, where each dark matter particle has velocity v. Using the outgoing boundary
conditions, ψ′(∞)/ψ(∞) = imsv, R is given as R = |ψ(0)/ψ(∞)|2. In the simple case
we are considering, we can derive an analytic form for R. In the limit where the ratio
ǫ ≡ mn/ms̃ = 0, R takes the form [15],

R =
y

1 − e−y
, (11)

where y = λ′
2

/8v = λ′
2

/4vr and vr = 2v is the relative velocity between the two dark
matter particles. Taking the small vr limit we have

R ≈ λ′
2

4vr
(12)

and we see that this effect will be largest for small vr.
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4 Calculation of the Relic Density

We are now in a position to calculate the relic density of our dark matter candidate.
As mentioned in the previous section, in this paper we will restrict our analysis to dark
matter particles with masses ms̃ ≥ 3 TeV. Not only is this range of masses physically
interesting, it also simplifies the analysis considerably due to the fact that freeze-out oc-
curs at a temperature above the electroweak phase transition, thus leading to a situation
in which no scalars have vevs. Consequently, the number of possible vertices contributing
to the annihilation cross sections is reduced and the calculation of the relic abundance
greatly simplified.

Taking the large mass range does lead to one slight complication in our analysis
in that the scalar state, s, has a very similar Boltzman factor compared to s̃ near the
freeze-out temperature, Tf . This is due to the fact that the mass splitting between s and
s̃ is small compared to the freeze-out temperature,

ms −ms̃ = (m2
s̃ +m2

susy)
1/2 −ms̃ ≃ m2

susy/ms̃ < Tf ≃ ms̃/25, (13)

where msusy is the supersymmetry breaking scale, which we take to be parametrically
smaller than ms̃. This means that these states will freeze-out at roughly the same tem-
perature and we have to worry about the annihilation rates of the scalar states as well
as the fermionic states.

There are three important types of diagram which determine the relic abundance
of our dark matter particle. The first type (type I) involves the annihilation of two
scalar s states. The relevant diagrams are contained in Fig. 2, where the CP-even, φs,
and CP-odd, as, components of s will have identical co-annihilation cross sections. For
computational ease we take all states to be massless apart from s and s̃ which have
masses ms̃ and ms̃ +m2

susy/ms̃.

s∗

s

h̃u

h̃d

φn
2λ′ms̃ λ

s

s

h∗u

h∗d

λλ′

2

s∗

s∗

hu

hd

λλ′

2

Figure 2: Type I coannihilation diagrams for the scalar s states.

For all three scalar annihilation diagrams we receive an enhancement from the Som-
merfeld effect where the CP-even scalar, φn, acts as the “rungs on the ladder” between
the co-annihilating scalar s states, as depicted in Fig. 3 for the case of the annihilation
of two s∗ states.

The resulting self annihilation cross sections for the CP-even and CP-odd components

7



s∗

s∗

φn

Figure 3: Sommerfeld diagram for scalar annihilations.

of s are

σ(φsφs → h̃uh̃d) = σ(asas → h̃uh̃d) =
(λ′λ)2

32πvrm2
s̃

y

1 − e−y
, (14)

σ(φsφs → huhd) = σ(asas → huhd) =
(λ′λ)2

64πvrm
2
s̃

y

1 − e−y
, (15)

σ(asφs → huhd) =
(λ′λ)2

16πvrm
2
s̃

y

1 − e−y
, (16)

(17)

where the different possible final states have been included and the factor, y/(1 − e−y),
accounts for the Sommerfeld enhancement.

The second type of diagram (type II) we need to include is the annihilation of s with
s̃ as depicted in Fig. 4. There are 4 different types of reaction implicitly represented in
Fig. 4. They are: φss̃ → CP-even scalar Higgs + higgsino, φss̃ → CP-odd scalar Higgs
+ higgsino, ass̃ → CP-even scalar Higgs + higgsino and ass̃ → CP-odd scalar Higgs +
higgsino.

s

s̃

hu, hd

h̃d, h̃u

ñ
λ′ λ

Figure 4: Type II: Annihilation of s with s̃.

This process can also be enhanced by the Sommerfeld effect via the diagram shown
in Fig. 5. The enhancement factor is exactly the same in this case as it was for the
co-annihilation of scalar s states.

The cross sections for these processes are found to be

σ(φss̃→ hih̃j) = σ(ass̃→ hih̃j) =
(λ′λ)2

2πvrm2
s̃

y

1 − e−y
, (18)
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s

s̃

φn

n

Figure 5: Sommerfeld diagrams for annihilation of s and s̃.

where i and j represent all possible combinations of up and down Higgs and Higgsino
states.

The third type of process (type III) is the co-annihilation of the s̃ states. In the
electroweak symmetric limit, there are no vevs for the n or Higgs states, neither is there
a tri-linear scalar A term, Aλnhuhd as we have approximated this term to be zero. This
means that the only final state products for s̃ co-annihilation will be neutralinos or
charginos (that is, there are no scalar final states).

This process can be enhanced by the Sommerfeld factor if the initial s̃ pair are in an
s-wave state. As we have two fermionic states, this means that they will be in a CP-odd
state which consequently forces the propagator to be the CP-odd component of the scalar
n state. The diagram for this co-annihilation is shown in Fig. 6 with the corresponding
Sommerfeld diagram for s̃ co-annihilation appearing in Fig. 7.

s̃

s̃

h̃u

h̃d

an
iλ′γ5 iλγ5

Figure 6: Type III: Annihilation of two s̃ states.

s̃

s̃

φn

an

Figure 7: Sommerfeld diagrams for the co-annihilation of two s̃ states.
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The resulting cross section for the s̃ co-annihilation is found to be

σ(s̃s̃→ h̃uh̃d) =
(λ′λ)2

256πvrm
2
s̃

y

1 − e−y
, (19)

where again all possible final states have been included.

We now have all of the cross sections needed to determine the relic density. As we
have two states freezing out almost simultaneously (our dark matter state s̃ and its scalar
partner s) we must be careful to include the effects of the heavier state in the calculation
of the relic abundance of the dark matter species. We follow Refs. [23, 28] in calculating
the final relic abundance of our dark matter candidate.

If we relabel our two states, s̃ and s, as s1 and s2 respectively, the type of reaction
that will determine the freeze-out of our two particles is

σij = σ(sisj → XX ′), (20)

where X and X ′ will be some combination of Higgses and higgsinos which will eventually
decay to MSSM degrees of freedom. Taking into account all possible diagrams, the three
cross sections we are concerned with have the following forms

σ(s1s1 → XX ′) = σ(s̃s̃→ h̃uh̃d) =
A

256
, (21)

σ(s1s2 → XX ′) =
1

2
(σ(φss̃→ hih̃j) + σ(ass̃→ hih̃j)) =

A

2
, (22)

σ(s2s2 → XX ′) =
1

4
(σ(φsφs → h̃uh̃d) + σ(asas → h̃uh̃d)) +

1

4
(σ(φsφs → huhd)

+ σ(asas → huhd) + 2σ(asφs → huhd)) =
A

128
, (23)

where

A =
(λ′λ)2

πvrm2
s̃

y

1 − e−y
. (24)

We assume that any s2 states remaining after freeze-out will eventually decay down
to s1XX

′. This means that the total number density of our dark matter particle will be
equal to the sum of the s1 and s2 number densities at freeze-out.

In order to calculate the relic density we define the following useful quantities [23]

ri ≡
gi(1 + ∆i)

3/2 exp[−x∆i]

geff

, (25)

where
∆i = (mi −m1)/m1, (26)

and

geff =
2

∑

i=1

gi(1 + ∆i)
3/2 exp[−x∆i], (27)
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where gi is the number of degrees of freedom of si, mi is the mass of si and x = ms̃/T .
Of course in our case we only have two different species of particle and so only ∆2 is
non-zero. In fact as s1 = s̃ and s2 = s, we have ∆2 = ms − ms̃ ≃ m2

susy/ms̃. Each of
our si states have gi = 2 degrees of freedom. Following Ref. [23], we find the freeze-out
temperature, Tf , by iteratively solving the equation

xf = ln

[

0.038geffMplms̃ 〈σijvr〉
g

1/2
⋆ x

1/2

f

]

, (28)

where xf = ms̃/Tf and

σeff =

2
∑

i,j

σijrirj =

2
∑

i,j

σij
gigj

g2
eff

(1 + ∆i)
3/2(1 + ∆j)

3/2 exp(−x(∆i + ∆j)). (29)

The final relic density is given by [23]

Ωh2 =
1.07 × 109xf

g
1/2
⋆ Mpl( GeV)J

(30)

where

J =

∫ ∞

xf

x−2aeffdx (31)

and g⋆ is the total number of relativistic degrees of freedom at Tf . In our calculation
of the relic density we will take g⋆ = 248, which includes all MSSM degrees of freedom
plus the four associated with the extra superfield N . In order for this to be correct the
masses of all these states must be below Tf ∼ ms̃/25, which will be true when we take
ms̃ ≥ 3 TeV and msusy = 100 GeV as an example parameter set.

It is instructive to compare the two cases of when we correctly include the Sommerfeld
factor in cross sections and when this contribution is absent. The comparison is most
clear when we plot the relic density, Ωs̃h

2, against ms̃ as shown in Fig. 8. In Fig. 8,
the red dashed lines correspond to the case where the Sommerfeld factor (given by
R = y/(1−e−y)) is not included in the cross sections, while the blue solid lines correspond
to the case where it is. The three lines for each case (with and without the Sommerfeld
effect), starting from the furthest left, correspond to λ = λ′ =1.5, 2, 2.5 respectively.
The two lines parallel with the ms̃ axis correspond to the WMAP allowed range for the
dark matter relic abundance, inferred from the combination of ΩMh

2 = 0.1277+0.0080
−0.0079 and

Ωbh
2 = 0.02229 ± 0.00073 [29].

For each line (of fixed coupling), the relic density increases as we increase the mass,
ms̃, as we would expect. Comparing sets of contours with the same couplings (λ =
λ′), we see the dramatic effect of the Sommerfeld enhancement. When the Sommerfeld
enhancement is included, the annihilation cross sections are increased, thus depleting the
number density of the dark matter particles which survive after freeze-out. The bottom
line is that the Sommerfeld enhancement allows for very heavy dark matter particles
to provide the required dark matter relic abundance. From Fig. 8 we can see that the
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Figure 8: Ωh2 as function of ms̃ at fixed λ and λ′. The red dashed lines correspond to
the case where the Sommerfeld correction is not included where as the blue solid lines
correspond to the case when it is included. The furthest most left line for each colour
corresponds to when λ = λ′ = 1.5, the middle lines are when λ = λ′ = 2 and the lines
furthest right are when λ = λ′ = 2.5. All plots are produced using msusy = 100 GeV.

maximum mass consistent with the WMAP allowed range when we have λ = λ′ =2.5 is
around 25 TeV.

The results of a full numerical scan (including the Sommerfeld enhancement) over the
three parameters λ, λ′ and ms̃ is shown in Fig. 9. Here, we plot contours corresponding
to the allowed range of Ωs̃h

2 in the λ− λ′ plane. Each pair of contours correspond to a
different value of the mass, ms̃, between 3 and 23 TeV. The left (right) contour of each
pair corresponds to the higher (lower) end of the allowed range in Ωs̃h

2.

Although we show contours only for discrete choices of ms̃, the remaining regions of
the λ − λ′ plane are filled for intermediate values of the dark matter mass.5 The effect
of the Sommerfeld enhancement is to pull the pairs of contours downward towards the
bottom left corner of the λ − λ′ plane. This allows us to have the correct relic density
for a given dark matter mass for smaller values of the couplings.

5 Direct and Indirect Detection

Although we intend to discuss the prospects for the direct and indirect detection of
heavy Higgs Portal dark matter in some detail in a companion paper to follow [16] we
will here briefly touch upon this subject. We find that the direct detection phenomenology
is fairly conventional and, although present experiments do not yet lead to restrictive

5There will be an upper limit on how large the couplings can be, which is determined by insisting we
have perturbativity up to our cut off scale. As shown in Section 6, large couplings of the size considered
here are shown to be natural in a consistent UV completion.
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Figure 9: Plots of pairs of contours for the allowed range of Ωh2 in the λ− λ′ parameter
plane for different values of the mass, ms̃. We have contours corresponding to masses
3, 7, 11, 15, 19, 23 TeV. The contours are produced using msusy = 100 GeV.

limits, a sizeable fraction of the expected parameter space will be covered by proposed
next generation detectors. In contrast, the indirect signals are greatly modified by the
potentially very large Sommerfeld enhancements.

5.1 Direct Detection

Experimental programs designed to observe the elastic scattering of WIMPs with nuclei
are collectively known as direct detection. The dark matter particles in our model, s̃,
interact with quarks in nuclei through the effective scalar interaction given by

L =
∑

U=u,c,t

CU s̃s̃ UU +
∑

D=d,s,b

CDs̃s̃ DD, (32)

where

CU =
∑

i

λUV1iV2iλ
′

2m2
hi

and CD =
∑

i

λDV1iV3iλ
′

2m2
hi

, (33)

and the mixing matrix Vij specifies the admixture of n, h0
u, and h0

d states in the neutral
scalar mass eigenstates, hi, with lightest neutral Higgs state being denoted h1. Unlike in
the case of many other dark matter candidates, there is no contribution from Z exchange
in this model. Note that the kinematics of the interaction (even if we consider scattering
of individual nucleons or even quarks with the dark matter) are such that we are outside
of the range for which the Sommerfeld enhancement is important.

13



Following Refs. [30, 22], we estimate that this interaction leads to an elastic scattering
cross secton per nucleon of

σs̃N ∼ 2 × 10−7 pb

(

Vij

0.5

)4 (

λ′

3

)2 (

120 GeV

mh1

)4

. (34)

For the range of masses we are interested in here, this cross section is below the
current constraints from experiments such as XENON [31] and CDMS [32], but is likely
to be reached in the next few years. For less optimal values of λ′, mh1

or Vij , however,
the prospects for direct detection could be considerably more difficult.

5.2 Indirect Detection

In addition to direct searches for dark matter, astronomers are also searching for the
products of dark matter annihilations, including gamma-rays, neutrinos, positrons and
antiprotons [33]. These efforts are known as indirect detection.

The dark matter annihilation rate, and thus indirect detection rates, can be enor-
mously enhanced due to the Sommerfeld effect. Depending on the astrophysical envi-
ronment being considered, annihilation rates can be enhanced by factors of 103 to 105

or even greater due to the slow relative velocities of dark matter particles. In fact, the
velocity dependence of the enhancement factor can potentially favour such astrophysical
objects as dwarf satellite galaxies of the Milky Way (due to the extremely low velocity
dispersion) as sites for indirect detection, rather than the central regions of the Milky
Way itself. A full calculation of the expected flux depends upon a detailed knowledge
both of the resonance structure of the Sommerfeld enhancement in the non-coulombic
and low vr regime and of the sizes of vacuum expectation values and interaction terms
in the scalar (S,N)-Higgs sector. A preliminary estimate shows that current indirect
detection experiments do not impose a useful limit on heavy Higgs portal dark matter,
but that there is a potential for significant signals in future observations [16].

6 UV Completion as a Fat Higgs Model

One possible way to UV complete our model and justify the choice of large couplings
λ, λ′ is to have some strongly interacting physics which dynamically generates the su-
perpotential S mass. It is noteworthy that the “Fat Higgs model” of Ref. [17] provides
exactly such a UV completion. With this in mind, we will now describe how our effective
theory can arise in a certain limit of the Fat Higgs models.

The Fat Higgs model is an N = 1 supersymmetric SU(2) gauge theory with six
doublets with the quantum numbers shown in Table 1.
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Superfield SU(2)L SU(2)H SU(2)R SU(2)g U(1)R Z2

T1 2 2 1 1 0 +

T2 2 2 1 1 0 -

T3 1 2 2 1 1 -

T4 1 2 2 1 1 +

T5 1 2 1 2 1 +

T6 1 2 1 2 1 +

P11 2 1 1 2 1 +

P12 2 1 1 2 1 +

P21 2 1 1 2 1 -

P22 2 1 1 2 1 -

Q11 1 1 2 2 1 -

Q12 1 1 2 2 1 -

Q21 1 1 2 2 1 +

Q22 1 1 2 2 1 +

S 1 1 1 1 2 -

S′ 1 1 1 1 2 -

Table 1: The field content under an SU(2)L×SU(2)H gauge and SU(2)R×SU(2)g×U(1)R

global symmetries. There is also an accidental Z2 symmetry with fields transforming as
shown. The U(1)Y subgroup of SU(2)R is gauged.

The tree-level superpotential is given as6 WFHtot = W1 +W2 +W3 where

W1 = y1ST1T2 + y2S
′T3T4 + y3ST3T4 + y4S

′T1T2 (35)

W2 = −mT5T6 (36)

W3 = y5

(

T1 T2

)

P

(

T5

T6

)

+ y6

(

T3 T4

)

Q

(

T5

T6

)

. (37)

The P and Q mixing terms are there to marry off unwanted “spectator” states such
that the low energy effective theory is as minimal as possible. According to Ref. [17], we
can also apply a Z3 which protects us from tadpole terms involving either of the singlet
fields, S and S ′. This Z3 will commute with the existing symmetries.

The gauge symmetry SU(2)H becomes strongly coupled at some scale, ΛH . Below ΛH ,
the appropriate degrees of freedom are mesons which are composite objects consisting
of two “T” doublets in the form Mij = TiTj, with (i, j=1...6). There is a dynamically
generated superpotential of the form PfM/Λ3

H as well as the tree level superpotential
which follows from Eq.(37). As P,Q, S and S ′ are not charged under SU(2)H , they remain
fundamental below ΛH . The effective superpotential appears as

Weff = PfM
Λ3

H

−mM56 + y1SM12 + y2S
′M34 + y3SM34 + y4S

′M12

+ y5 (M15P11 +M16P12 +M25P21 +M26P22)

+ y6 (M35Q11 +M36Q12 +M45Q21 +M36Q22) . (38)

6The terms with coefficients y3 and y4 were not included in Ref. [17]. These terms are not forbidden
by any symmetries so we include them for completeness.
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We next need to canonically normalise the fields. After doing so, the superpotential reads

Wdyn = λ
(

PfM − v2
0M56

)

+m1SM12 +m2S
′M34 +m3SM34 +m4S

′M12

+ m5 (M15P11 +M16P12 +M25P21 +M26P22)

+ m6 (M35Q11 +M36Q12 +M45Q21 +M36Q22) , (39)

where, using Naive Dimensional Analysis (NDA) [34], we have

v2
0 ∼ mΛH

(4π)2
, (40)

mi ∼ yi
ΛH

4π
, (41)

λ(ΛH) ∼ 4π. (42)

We now make the assumption that (m5, m6) ≫ (m1, m2, m3, m4), by a factor of 10
or so, and integrate out everything with a mass proportional to m5 or m6. This leaves
us with a superpotential of the form

W ′
dyn = λM56

(

M14M23 −M24M13 − v2
0 +M12M34

)

+ m1SM12 +m2S
′M34 +m3SM34 +m4S

′M12. (43)

Assuming that m1 ∼ m2 ∼ m3 ∼ m4 ∼ m′, the fermionic components of the
superfields, S, S ′,M12 and M34, mix and, provided m1m2 6= m3m4, the lightest eigenvalue
of this mass matrix will generically have a mass of order m′.

If we now do this diagonalization and integrate out all but the lightest eigenvalue,
call it S1, of the S, S ′,M12,M34 mass matrix, we are left with the superpotential

W = λN
(

HuHd − v2
0

)

+
λ′

2
NS2

1 +
ms1

2
S2

1 , (44)

where we have changed notation according to the identifications

(

H+
u

H0
u

)

=

(

M13

M23

)

,

(

H0
d

H−
d

)

=

(

M14

M24

)

, N = M56. (45)

The parameter λ′ = λUijUkl, where UijUkl are components of the unitary matrix that
diagonalizes the S, S ′,M12,M34 fermion mass matrix.

The final assumption we make is that ms1
is parametrically larger than the elec-

troweak scale and soft supersymmetry breaking masses. The superpotential in Eq.(45)
is of the form we need with an additional linear term for the superfield N . This term is
harmless with respect to the dark matter dynamics but we include it for completeness.

Ignoring the S1 field for now, the remaining superpotential is that of the Fat Higgs
model and the analysis of the electroweak vacuum structure proceeds as outlined in
Ref. [17]. It is worth comparing the superpotential in Eq.(45) with that of the MNSSM
[26, 27]. In particular, the N linear term in Eq.(45) is analogous to the tadpole terms
appearing in the superpotential of Eq.(3.1) of Ref. [26]. In fact, the superpotential in
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Eq.(45) (apart from the S1 terms) is that of the MNSSM. Consequently we can use the
rather more detailed analysis of Refs. [26, 27] for the Higgs sector.

The S1 terms in Eq.(45) do not spoil the electroweak structure of the MNSSM. We
can see this by integrating out S1 using the equations of motion

∂W

∂S1

= λ′NS1 +m1S1 = 0, ⇒ S1 = 0. (46)

Substituting the solution back into Eq.(45) we have the effective superpotential

Weff = λN
(

HuHd − v2
0

)

, (47)

which is exactly the same as the superpotential for the MNSSM and the Fat Higgs model.

7 Conclusions

In this article, we have discussed models in which a very heavy (3-30 TeV) dark matter
candidate is present. In particular, we have focused on models motivated by Higgs Portal
and Hidden Valley models, in which the dark matter (and the rest of the partially hidden
sector) interacts with the Standard Model and its superpartners only through Higgs
interactions. We have also shown that such model may be given a UV completion in the
form of a composite “Fat Higgs” model.

Dark matter annihilations in this scenario are enhanced considerably by non-
perturbative contributions known as the Sommerfeld effect. Through this enhancement,
dark matter particles with masses well above the electroweak scale (up to ∼30 TeV)
can be produced thermally in the early universe with an abundance consistent with the
measured density of dark matter.

The dark matter particle in this scenario, although well beyond the reach of the
Large Hadron Collider, is still potentially detectable by direct and indirect dark matter
experiments. Although we leave the details of this to future work [16], we point out that
Sommerfeld corrections can dramatically enhance the dark matter annihilation rate in
low velocity dispersion environments, such as dwarf spheriodal galaxies, thus considerably
improving the prospects for indirect dark matter searches.
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